
EE475 Lab #3 Fall 2004

Memory Placement and Interrupts

In this lab you will investigate the way in which the CodeWarrior compiler and linker
interact to place your compiled code and data in the memory of the HC12 evaluation
board. You will also install an interrupt function that is called when the IRQ button is
pressed.

Preliminaries
1. Make a temporary local folder for your work:

c:\EEClasses\EE475\tempxxx .

2. Launch CodeWarrior and create a new project using the New Project Wizard (see
Lab #2 if you don't recall the procedures).

3. Make (compile and link) the dummy program.

4. In CodeWarrior, open the linker input file, simulator_linker.prm. The
.prm file tells the linker the regions of memory that are available. The FLASH
and RAM labels are defined and used, although what is identified as Flash
EEPROM is actually external RAM: this makes the program loading and
debugging easier for our tests.

→ From the simulator_linker.prm file, record the FLASH and RAM
address ranges and include this information in your memo report.

5. Now open the linker output map file, simulator.map. The .map file is
generated by the linker, and lists the results of the linking process, i.e., where the
code and data segments were placed in the HC12 memory. For this minimal C
program note that the program occupies only a few dozen bytes, and there are no
constants and no static data.
→ From the simulator.map file, record the .text, .startData, .init,
.stack, and .copy section sizes and include this information in your memo
report.

Exercise #1:
Now see what happens to the actual memory allocation when you declare an array in
various ways: automatic, static, automatic initialized, static initialized, and global. Do
this by making the following modifications to your C program:

1. Edit your C program by adding the statements within the main() block:

 char buf[40];
 buf[0]='\0';

EE475 Lab #3 2

This creates an automatic storage class array and simply sticks a null in it.

→ Build the program, open the simulator.map file, find the
SECTION-ALLOCATION SECTION and fill out the first column of the table on
the check-off sheet, indicating the size of each of the specified segments. If the
segment is not present, just leave that box blank. Ignore the .abs_section
lines.

2. Now edit your C program to change the declaration to be initialized:

 char buf[40]={"test"};
 buf[0]='\0';

→ Rebuild and note the size of each segment from the linker output file in column 2
of the table.

3. Again edit your C program to change the declaration to static, without initializing:

 static char buf[40];
 buf[0]='\0';

→ Rebuild and note the size of each segment in column 3.

4. Once again edit your program to use a static initialized array:

 static char buf[40]={"test"};
 buf[0]='\0';

→ Rebuild and note the size of each segment in column 4 of the table.

5. Finally, make the buf array declaration global by moving it up outside of the
main() function, i.e.,

char buf[40];

void main(void)
{…

→ Rebuild and record the size of each segment in column 5.

→ Using the .map file information, demonstrate for the instructor that you can
locate each section and view the memory contents using the debugger.

EE475 Lab #3 3

Note that the memory requirements and linker behavior differ depending on the class of
storage used.

1. If the buffer is automatic and uninitialized, it will only appear on the stack and no
memory is allocated explicitly in the program.

2. If the buffer is automatic but must be initialized, the code image now must
include the initialization string AND some additional instructions that will copy
the initialization string into the buffer (on the stack) before it is used.

3. If the storage class is static, the buffer is placed in a static data segment.

4. Finally, if the buffer is declared global, the linker places it in a global memory
segment.

→ Does the contents of you table match these expectations? Be sure to explain in your
memo report.

Exercise #2:
Replace the main.c file in your project with the main.c from Lab #2 (sequential LED
flash program). Also add the dbug12.h file to the project.

Make the program, fix any errors, and launch the debugger. Set the debugger to use the
D-bug12 target interface, and verify that the code runs properly (LEDs flash) on the
HC12 evaluation board.

Once everything is running properly, go back and modify your C program to include an
interrupt function, as follows.

To do this you will have to define an interrupt service routine (ISR) by using the type
qualifier interrupt. This is done as follows:

interrupt void your_function_name(void)
{

… your ISR code …
}

The interrupt qualifier is important: it tells the compiler to generate an RTI (return
from interrupt) at the end of the function, rather than an RTS (return from subroutine).

Write the interrupt function so that it just increments a global variable. Something like:
int vcnt;

interrupt void your_function_name(void)
{

vcnt++;
}

We want to install this interrupt service routine so that it gets executed when the user
presses the IRQ button on the I/O board. The button press generates the UserIRQ signal.

EE475 Lab #3 4

So, to put the address of this interrupt function where you want it, use the
SetUserVector monitor function, and the Address type cast defined in dbug12.h
.

DBug12FNP->SetUserVector(UserIRQ,(Address) your_function_name);

Keep in mind that after your program sets the interrupt vector to point to your function,
you will need to enable (unmask) interrupts on the HC12 using the statement
EnableInterrupts; in your main() program. JUST BE SURE NOT TO
ENABLE INTERRUPTS BEFORE YOU STORE THE ISR ADDRESS!! You want the
vector to be loaded before it might get used.

Make and load your program, then use the debugger to observe the vcnt variable before
and after you press the IRQ button on the I/O board. Is the variable incremented?

→ Show the instructor where the UserIRQ address is located in the RAM vector
table - What address is this? Also, show that the contents of that vector is the
address of your_function_name(). Give your answers in hexadecimal.

Exercise #3:
(3a) You probably noticed that the interrupt routine gets called repeatedly if you hold
down the IRQ button. This is because the default behavior for the IRQ line is level
sensitive: the interrupt is asserted whenever the IRQ pin is pulled low.

The HC12 can be programmed to be negative-edge sensitive for the IRQ line instead of
level sensitive. Look at the HC12 documentation and/or Prof. Cady�s HC12 textbook to
find out how to program the chip for edge-triggered IRQ operation. Modify the
initialization section of your program to enable the edge sensitive behavior.

→ Demonstrate the edge-sensitive behavior of the program for the instructor: only
one increment of the global variable should occur with each press.

(3b) Finally, modify the LED flashing loop in your main() routine so that it exits once the
IRQ button has been pressed three times: break out of the loop if vcnt is greater than or
equal to 3.

NOTE that you should put a statement after the loop to prevent your main() program
from exiting. The line

_asm("swi");

is a good choice, since it causes a break that turns control back to the debugger.

→ What happens if you do exit from the main() routine??

Instructor Verification Sheet
Lab #3 Fall 2004

Student Name:

SECTION-ALLOCATION SECTION segment sizes in bytes:
Section Name (.map file) 1 auto 2 auto+init 3 static 4 static+init 5 global
.text
.bss
.data
.startData
.init
.common
.stack
.copy

 Instructor Initials Date
#1 Locate and view
segments in memory
according to .map file.

#2 Demonstrate functioning
interrupt service routine and
vector table entry.

#3 Demonstrate edge-
triggered interrupt mode.

	Preliminaries
	Exercise #1:
	Exercise #2:
	Exercise #3:

